
IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 1

Comparative Analysis of Control Plane Security of
SDN and Conventional Networks

AbdelRahman Abdou, Paul C. van Oorschot, and Tao Wan

Abstract—Software defined networking implements the net-
work control plane in an external entity, rather than in each
individual device as in conventional networks. This architectural
difference implies a different design for control functions neces-
sary for essential network properties, e.g., loop prevention and
link redundancy. We explore how such differences redefine the
security weaknesses in the SDN control plane and provide a
framework for comparative analysis which focuses on essential
network properties required by typical production networks.
This enables analysis of how these properties are delivered by
the control planes of SDN and conventional networks, and to
compare security threats and mitigations. Despite the architec-
tural difference, we find similar, but not identical, exposures in
control plane security if both network paradigms provide the
same network properties and are analyzed under the same threat
model. However, defenses vary; SDN cannot depend on edge
based filtering to protect its control plane, while this is arguably
the primary defense in conventional networks. Our concrete
security analysis suggests that a distributed SDN architecture
that supports fault tolerance and consistency checks is important
for SDN control plane security. Our analysis methodology may
be of independent interest for future security analysis of SDN
and conventional networks.

Index Terms—Network security, SDN security, Control plane
security, OpenFlow security

I. INTRODUCTION

SOFTWARE-DEFINED NETWORKING is a network ar-
chitecture in which the control plane is separated from

each individual network device and instead implemented in
an external software entity. The external entity has complete
knowledge of the topology of a network under its control, and
programs the forwarding tables of each individual device in
the network. In contrast, conventional networks (CNs) have
the control plane, i.e., network control functions such as
routing protocol implementations (e.g., Open Shortest Path
First (OSPF) [1]), running inside each network device to learn
forwarding tables in a distributed fashion. SDN architectures
have two distinguishing properties of direct interest herein [2]:

1) Control and data plane separation. Removing the
control plane from network devices and implementing it
in an external SDN controller significantly reduces the
complexity of network devices, making them simpler and
cheaper than CN devices whose distributed control plane

A. Abdou is with the School of Computer Science, Carleton University,
Canada and the Institute of Information Security, ETH Zürich, Switzerland.
Email: abdou@scs.carleton.ca

P.C. van Oorschot is with the School of Computer Science, Carleton
University, Canada. Email: paulv@scs.carleton.ca

T. Wan is with Huawei Canada. Email: tao.wan@huawei.com
This paper will appear in IEEE Communications Surveys and Tutorials

(COMST). This is the authors’ copy for personal use. c©2018 IEEE. Version
created on: May 18, 2018.

functionality is implemented across millions of lines of
code, and defined across hundreds of RFCs.

2) Network programmability. An SDN controller, with
complete knowledge of a network’s topology, controls a
multitude of network devices within its administrative do-
main. By providing application programming interfaces
(APIs), SDN makes it possible to develop networking
applications, e.g., traffic engineering [3], thus enabling
network innovation. In contrast, CN devices are propri-
etary and closed, making it hard or impossible to develop
innovative network applications.

The concept of SDN has evolved since the term was origi-
nally coined in 2009 [4]. Network devices in practice can be
pure SDN, pure CN, or hybrid. A pure SDN device implements
no control function and is fully controlled by an external SDN
controller. A CN device implements all of its own control
functions and is not controlled by any SDN controller. A
hybrid SDN device both implements control functions, and can
be controlled by an SDN controller. Accordingly, a network
can be one of the three types. A pure SDN network consists of
at least one SDN controller and network devices all of which
are fully controlled by the controller. A CN consists of devices
all of which implement and run their own control functions
with no external controlling entity. A hybrid network consists
of hybrid devices and at least one SDN controller.

In academic work, “SDN” often implies a pure SDN net-
work, such as an OpenFlow network, and many academic
SDN security research papers (e.g., [5]) focus primarily on the
security of OpenFlow networks. SDN controllers originating
from academic work, such as FloodLight and NOX, also
primarily support OpenFlow and control OpenFlow switches
which implement no control functionality (i.e., are pure SDN,
rather than hybrid).

In contrast, SDN in the industry commonly refers to hy-
brid networks consisting primarily of CN devices, augmented
with open interfaces to allow external control by an SDN
controller. For example Broadcom, a leading provider of
switch chips, published OpenFlow Data Plane Abstraction
(OF-DPA) software [6] to allow switches based on Broad-
com chips to be controlled by OpenFlow. Note those CN
devices, although often claimed to support OpenFlow and
which can be controlled using the OpenFlow protocol, do
not actually implement OpenFlow tables and are not true
OpenFlow switches. Rather, they use conventional tables such
as L3 tables and Access Control Lists (ACLs) to emulate
the behavior of OpenFlow tables, which allows packets to be
processed beyond destination addresses. As another example,
OpenDaylight [7] and ONOS [8], two leading open source
SDN controllers, can control not only OpenFlow switches but



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 2

also conventional devices, e.g., using NETCONF [9]. It is clear
that industrial network practitioners focus more on network
programmability than on the separation of control and data
planes. We refrain from speculating on which type of SDN is
better, or is the future.

We study and compare the control plane security of a pure
SDN (hereafter referred to as SDN) and a CN. While hybrid
networks are more popular in the field, there is no clear
consensus on how to best divide control functions locally
inside a device and externally into a controller. Further, by
studying the security of both SDN and CNs, we hope that
security threats identified in each can be selectively applied to
a given hybrid network when its local and external controls are
well defined. This may also apply for stateful SDNs, which
is another approach to allow some intelligence in an SDN
switches (see Section IX-B5 for details).

Motivation. Research on the security of SDN and CNs is
in two distinct states. On one hand, the security of CNs has
received less academic attention but is well understood by
network security practitioners. Aside from the area of routing
(e.g., BGP security [10]), there are relatively few academic
papers on the control plane security of a CN. However, security
threats are well understood by equipment vendors and many
security mitigations are built into CN products (e.g., switches,
routers). In contrast, SDN security has received considerable
academic attention (e.g., [11], [12], [13]), but its progress is
considered slow (at best) by industrial measures. For example,
neither of the two leading open source SDN controllers, Open-
Daylight and ONOS, has implemented significant security
mitigation.

These different states of SDN and CN security research
have attracted little attention. We observe that many papers
on SDN security assume a simple network, ignoring prac-
tical properties such as redundancy and scalability essential
to realistic networks—thus excluding security threats faced
by important network control functionality. Further, security
threats identified for SDN are not properly compared with
those in CN. For example, previous literature [11] positions
Host Location Hijacking attacks as a new attack in SDN,
but inaccurately compares these with ARP cache poisoning
attacks in CN, whereas Section VII-A herein shows them to be
comparable to MAC table poisoning. Such misunderstandings
contribute to why considerable academic research on SDN
security have little impact on SDN in industry, highlighting
the value of systematizing literature relating SDN and CN
security, while focusing on practical issues.

Objective. We aim to address this gap by a comparative
security assessment of conventional and SDN networks. Rather
than a security analysis of all aspects, we focus on control
plane security, since (1) it is in their control plane architecture
that CNs and SDN differ primarily, and (2) attacks against
control plane aim to affect data plane functionalities.

We provide a framework consisting of essential network
properties required by production networks. Using this, we
study how those properties are achieved by SDN and CN
respectively, and analyze the security attacks and mitigations
accordingly. Our finding is that the security threats faced by
SDN and CN are comparable in an apples-to-apples compari-

son, i.e., if they are tasked to provide the same network prop-
erties under the same threat model (despite the architectural
differences between them). However, defenses vary in that
filtering in the network edge is effective in CN, but less so
in SDN. Further, consistency checks, which are required by
both networks to defeat inside attacks, can be implemented
inside each CN device, but require a highly modularized
SDN software architecture to facilitate implementation there.
Our finding is supported by detailed security analysis. Our
framework and comparative methodology may also be of
independent interest, to guide future SDN security analysis
in both academia and by practitioners.

Contributions. To summarize, this paper:
• Identifies five control functions required by a realistic pro-

duction network to accomplish essential network services.
• Analyzes threats and defense mechanisms pertaining to

these five functions when implemented by L2 networks,
L3 networks, and SDNs.
• Provides a new evaluation framework to objectively

compare the security of both network paradigms, using
two threat models defining the attacker’s position in the
network.

The sequel is organized as follows. Section II provides back-
ground information on CN and SDN architecture. Section III
outlines fundamental network properties required by typical
production networks, as well as the threat model used for our
analysis. Sections IV and V analyze the security threats of the
control plane of conventional Layer-2 (L2) and Layer-3 (L3)
networks respectively. Section VI analyzes security threats in
SDN. We compare the threats and mitigations of SDN with
CN in Section VII, and provide insights based on this analysis
in Section VIII. Section IX reviews related work. Section XI
concludes.

II. BACKGROUND

Here we provide background on CN and SDN for consistent
terminology and later reference. Networking experts may
advance to Section III.

A. Conventional Networks

A CN can be L2 or L3. A network consisting of only L2
switches, as its intermediate systems, is called an L2 network.
Two (or more) L2 networks can be connected, e.g., using an
L3 router. A network of L3 routers is called an L3 network.
Other than using different types of destination addresses for
forwarding, L2 and L3 networks differ mainly in two aspects:

1) They use different mechanisms in constructing their for-
warding tables. L2 devices learn their forwarding tables
(i.e., MAC tables) from the data plane. L3 routers build
routing tables from the control plane using routing pro-
tocols. Note: MAC tables map MAC addresses to switch
ports, not to be confused with ARP tables which map IP
addresses to MAC addresses.

2) They handle unknown packets differently. An unknown
packet is a packet without any corresponding forwarding
rules. An L2 device floods an unknown packet to all



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 3

Fig. 1. Generic SDN architecture

ports except the receiving one to learn the forwarding
rule, while an L3 router drops an unknown packet (and
may also notify the packet source, e.g., using ICMP).

Due to these differences, L2 and L3 networks face different
sets of security threats. Thus, we divide CN into L2 and L3,
and discuss separately in Sections IV and V.

B. Software Defined Networking

SDN involves one or more SDN controllers, each control-
ling a number of network elements within its domain via
standard protocols (such as OpenFlow). Each controller may
run in multiple instances, each further managing a subset of
network elements and backing-up other instances to provide
both scalability and high availability. SDN controller instances
also communicate with each other within the same domain, or
may be federated with controllers in other domains, e.g., to
form a complete view of the network (see Fig. 1). Further,
there may be a hierarchy of SDN controllers for scalability or
multiple layer control. The separation of the control plane from
the data plane has enabled numerous novel network appli-
cations and usages, e.g., Software-Defined Optical Networks
(SDONs) [14] and SDN-based intrusion prevention [15].

Scope of our Analysis: An SDN controller is an entity
that does not exist in a CN, thus its security requires special
attention. As noted earlier, we focus on control plane security
herein. Security analysis of the mechanisms implementing
fundamental network properties (see Section III) has not
received much attention from the SDN community (cf. Hong
et al. [11] for security analysis of forwarding mechanisms
in SDN). This motivates us to consider it and herein give
a framework for directly comparing control plane security
issues with those facing CNs. We see analysis of control plane
security as an important step contributing to a broad security
analysis of SDN, which should include all SDN components
(see Fig. 1).

III. A FRAMEWORK FOR COMPARATIVE ANALYSIS

Our framework consists of a set of five network properties,
i.e., functional requirements for typical services made available
by production networks, and two threat models (see below) to
be applied to both SDN and CNs.

A. Network Properties

Production networks must provide properties, such as loop
free forwarding, to allow entities attached to the network to

communicate. As outlined by ISO/IEC Standard 7498-1 [16],
such properties can be provided by various layers of the
protocol stack, hence the modularized layering architecture in
CNs. In contrast in SDNs, the responsibility falls primarily
on the controller to configure the network to provide such
properties. We outline five primary such properties that, we
argue, are among the most critical to allow production net-
works to operate properly in practice. While these are not
specifically related to security, they are important in security
analysis as each may require its own control functions and
introduce unique security threats. Since multiple properties
may be provided by a common control protocol, each property
does not necessarily introduce new security threats.

A. Basic Forwarding. A network consisting of a single
switch must establish forwarding information to allow
attached entities to communicate. For example, a sim-
ple network consisting of one switch must allow hosts
connecting via the switch to communicate.

B. Loop Free Forwarding. A network consisting of multi-
ple devices and links which form physical loops must
ensure there is no forwarding loops among network
device forwarding tables.

C. Link Redundancy. If there are multiple links between
a pair of network devices, the network topology should
remain unchanged in the event that one or several of such
links go down as long as there is one functioning link
between the pair. Further, it should be possible to use all
links to transmit data (for higher throughput), instead of
only one.

D. Device Redundancy. This property is often referred to
as high availability. A network consisting of two or more
devices should remain fully available in the event of the
failure of any single device.

E. Scalability. As a network grows and becomes large, it
should remain functional and manageable. Network de-
sign should allow growth without significant management
overhead.

Note that in this framework, we separate Basic Forwarding
and Loop Free Forwarding because the protocols implement-
ing them are different, the threats targeting each of their pro-
tocols are different, and defenses to harden each are different
as well.

To demonstrate the importance of these properties, con-
sider as an example a large Internet Service Provider (ISP)
network. The first two properties are essential for its basic
operation. The ISP aims to increase its network efficiency and
minimize the down time for competitive advantage. Thus, the
ISP needs to leverage protocols that utilize all the physical
connections between switches (third property), and enable the
network to continue operation if routers or switches fail (fourth
property). This should be auto-configured, otherwise network
administrators must manually reconfigure the network to avoid
the faulty device. Finally, the ISP is interested to allow the
network to operate smoothly as clients and their traffic increase
dramatically, which requires the ISP to run protocols and
mechanisms implementing the fifth property.

Besides these properties, there are several others that a



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 4

network may provide, e.g., multicast routing or Quality of
Service (QoS). A carrier network may also need to support
virtual private networks (VPN) [17] to its customers, e.g.,
using MPLS. The importance of these properties vary by the
applications using the network, whereas the five properties we
considered above in our framework are essentially fundamen-
tal as they reflect any network’s ability to operate efficiently,
be highly available (upon link or device failure, cf. [18]),
and scale properly with increased loads and connected end-
points [19].

B. Threat Models

ITU-T X.800 [20] indicated five fundamental security ser-
vices to be provided by different layers of CNs: authenticity,
confidentiality, integrity, access control and non-repudiation.
Using our framework, we identify how an adversary can
exploit the lack of these services to mount attacks. However,
the network position from which the adversary mounts these
attacks can change its ability to succeed. For example, if an
adversary only has access to the network from its edge (i.e.,
compromised an end host), it will not be able to easily mount
a Switch Blackhole attack [13] (where traffic flows are routed
through a dead-end path).

A consistent threat model is thus required to objectively
compare security threats between CNs and SDN. CNs often
assume that network devices (e.g., switches and routers) are
trusted but entities attached to the network are not. We call
this the END-HOST threat model. Based on this model, CNs
often take two defensive approaches in practice:

1) Run control protocols only in ports facing other network
devices, i.e., Network-to-Network Interfaces (NNIs), but
not on ports facing user equipment, i.e., User-to-Network
Interfaces (UNIs). For example, Fig. 2 represents a L3
network using OSPF to automatically learn network
topology and update forwarding tables; here OSPF will
run in NNIs but not UNIs (the ports connecting A or B).

2) Defense mechanisms are usually deployed in UNIs to
prevent attacks against the network from user equipment.
For example, assume VLANs are used in Fig. 2. VLAN
tags in the frames from user equipment (e.g., A, B) are
untrusted, and thus will be stripped upon arriving at a
switch port. However, VLAN tags are not stripped by
NNIs, assuming they are added by trusted switch ports.

While the END-HOST threat model has its merits, the
assumption that network devices are trusted may be too strong,
especially as virtualization [21] is becoming increasingly pop-
ular, because the boundary of a network can expand from
within conventional proprietary hardware-based devices into
user-lands, where virtual network devices run alongside user
applications inside common commodity servers.

Thus we also consider the ALL-ELEMENT threat model,
where all network elements are assumed vulnerable. That is,
neither SDN controllers nor network devices are considered
trusted. As such, attacks could be from end hosts, as well as
network devices and SDN controllers. We use these two threat
models in Section VII to compare the attacks and defenses of
SDN and CN.

IV. L2 NETWORKS

We now discuss how L2 networks satisfy the network
properties of our framework, and analyze security threats
and mitigations associated with each property. We focus on
Ethernet networks, as they are among the most widely used
L2 technologies in practice. This analysis will then be used
to objectively compare security threats stemming from the
protocols satisfying these properties in L2 networks with their
counterpart in SDNs (see Section VII and Section VIII for
comparisons and insights).

A. Basic Forwarding

To provide network connectivity, an L2 device uses MAC
learning to build its MAC table, which maps switch ports
to MAC addresses, and possibly other information such as
VLAN tags. When a switch receives a frame from one of its
physical ports, it adds a new (or updates an existing) entry in
the MAC table mapping the frame’s source MAC address to
the receiving port. Multiple MAC addresses can be associated
with a single port. To forward a frame, a switch looks up its
destination MAC address in the table, and forwards the frame
through the corresponding port. If no entry is found, the switch
floods the frame to all ports except the receiving one. The
intended destination, upon receiving the flooded frame, sends
a response frame enabling the switch to learn the mapping
between receiving port and responding source MAC address.
The missing mapping entry is added into the table for future
use. Figure 3 illustrates a MAC table for a single switch.

1) Attacks: An L2 MAC table is learned from data plane
(including end-user) packets. Thus, it is subject to MAC at-
tacks [22]. A malicious host can send a packet with a falsified
source MAC address to poison a switch’s MAC table. Two
known attack strategies are as follows. In MAC spoofing [23],
an attacker sends frames with spoofed source MAC addresses
matching those of target (victim) hosts, thereby hijacking
traffic destined to those victims. If a victim is actively sending
packets to switches, the poisoned MAC table will alternate
between correct and falsified states. A more effective attack,
MAC Flooding, sends a large number of garbage frames with
randomly generated source and destination MAC addresses to
fill up the MAC table. Once the table is full, legitimate frames
will not match any forwarding entry, resulting in flooding
of frames to switch ports including those connecting to the
attacker who can thus eavesdrop or even hijack virtually all
traffic. Any device, including end-user devices (outsiders) and
network devices (insiders), can similarly manipulate a MAC
table.

Note that this differs from ARP spoofing (Section V-A1).
MAC attacks poison the MAC table of a switch using any
packet with a spoofed source MAC address. ARP spoofing
poisons the ARP table of a host or router using only ARP-
related packets (e.g., ARP response or gratuitous ARP [24]).

Other attacks have also been previously studied. For exam-
ple, wormhole attacks have received considerable attention in
the academic literature (e.g., [25], [26]), but appear lower on
the list of overall concerns than other security problems which
we give more attention to herein.



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 5

Fig. 2. L3 Network running OSPF in Network-to-Network Interfaces (NNIs).

Port # MAC
1 A
2 B
3 C

Fig. 3. MAC table for switch with three devices connected.

2) Defenses: MAC attacks can be mitigated by preventing
untrusted devices such as hosts from sending packets with
spoofed MAC addresses. One such mitigation mechanism,
port security [27], allows a switch to bind a port to one or
several MAC addresses (MAC binding). Port security usually
also limits the number of MAC addresses to be associated
with a switch port (MAC limiting). MAC binding can prevent
MAC spoofing, but is static and typically requires manual
configuration—possibly introducing configuration overhead
and misconfigurations. MAC limiting appears more practical
as it can mitigate MAC flooding attacks and requires only sim-
ple configuration, but alone, does not prevent MAC spoofing.

B. Loop Free Forwarding

In L2 networks with multiple switches and looping links
(see Fig. 4), forwarding loops can occur when unknown L2
frames are flooded and no Ethernet frame TTL field limits how
many times a frame is forwarded. Thus for loop prevention, an
L2 control protocol like the Spanning Tree Protocol (STP) [28]
is needed.

Fig. 4. Operation of the spanning tree protocol.

In STP, switches exchange Bridge Protocol Data Units
(BPDUs) carrying information about switch identifiers and
path costs, and accordingly compute a spanning tree. A root
switch is first elected, typically that with the smallest identifier.
Each non-root switch then determines the root port as the port
with least-cost path leading to the root switch. Similarly, for

each link in the network, the end port closer to the least-
cost path is called the designated port. All remaining ports
are called blocked ports. A spanning tree then consists of all
the network switches (one as root) and some network links.
The links not in the spanning tree are still used to exchange
control plane traffic (e.g., BPDU) but only in one direction to
be loop-free.

1) Attacks: STP uses BPDU, with a multicast destination
MAC address, to exchange topology information to elect a
root bridge and to establish a spanning tree, assuming all
BPDUs are trustworthy. Due to the lack of security protection
(e.g., no default robust authentication [29]), STP is subject to
BPDU spoofing attacks [23], as well as BDPU tampering and
BDPU flooding. For example, an attacker could send a spoofed
BPDU packet with a low priority and small MAC address
to result in the lowest bridge identifier among all switches,
thus winning the root bridge election. Being the root bridge,
the attacker receives virtually all network traffic within the
STP domain. BDPU tampering could lead to the calculation
of incorrect network topology. BDPU flooding could force
switches to continuously re-calculate topology, resulting in
service disruption.

2) Defenses: An administrator may intervene in root place-
ment, e.g., manually specifying the location of the root switch,
thus eliminating the need for dynamic election. Cisco’s root
guard command [30] facilitates this. Likewise, BPDU filter
prevents a host from participating in STP by filtering BPDUs
in NNIs (see Fig. 2). As such, if a host sends a BPDU, the
receiving switch discards it.

C. Link Redundancy

While STP can prevent forwarding loops, it uses a single
link between a pair of switches even when redundant links
exist, resulting in underutilized network bandwidth or even
packet loss in the event of link failures. To improve band-
width usage and redundancy, L2 protocols may support link
aggregation, grouping multiple links into one virtual link. A
Link Aggregation Group (or LAG), viewed as a single link,
can be included in a spanning tree, allowing their collective
use for link protection and load balancing.

Link aggregation can be configured manually, or estab-
lished dynamically by the Link Aggregation Control Protocol
(LACP) [31]. LACP transmits LACP Data Unit (LACPDU)
to inform the other end (partner) of its state and its under-
standing of partner state. Based on LACPDU, a LAG can be
dynamically created and updated.



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 6

1) Attacks: A switch running LACP sends to, and receives
from its partner, LACPDUs to maintain link aggregation.
LACPDUs are typically sent over a point-to-point link, making
Man-in-the-Middle (MitM) tampering difficult, but remaining
vulnerable to LACP spoofing attacks because (1) LACP is
usually implemented in the CPU (vs. data plane), allowing
a switch to receive LACPDUs from remote entities; and (2)
it has no security protection (e.g., peer authentication) [31].
Thus, an external entity (e.g., a host) may send forged LACP-
DUs to a switch to influence the state of its link aggregation,
e.g., to cause link instability or even Denial of Service (DoS).

2) Defenses: Implementing LACP in the data plane may
ensure that LACPDUs are only received from a given port and
never leave that port, mitigating forged LACPDU injection.

D. Device Redundancy

Device level redundancy ensures that the failure of one or
more devices does not result in loss of network connectivity;
e.g., Cisco Switch Stacking (CSS) [32] allows a number of
switches, usually of the same model, to form a redundancy
group. Within a redundancy group, a master is elected dynam-
ically, e.g., based on bridge identifiers and/or priority values.
If a master fails, a new master is elected to ensure ongoing
network connectivity.

1) Attacks: Similar to attacks on STP, the process of
dynamic master election is subject to spoofing attacks. Lever-
aging the lack of authentication, an adversary can send falsified
messages to become the master upon device failure, thus
control a device within the network itself.

2) Defenses: The election process should use cryptographic
methods for origin authentication and message integrity to ex-
clude unauthorized entities, e.g., a host, from joining. Switches
within a redundancy group should be connected via dedicated
ports, and the election process should only run in those
ports. Any election message received from other ports should
be dropped. This prevents an adversary on the edge of the
network from manipulating the process and itself become the
master.

E. Scalability

Scalability is an important issue with STP and MAC learn-
ing; every switch must learn all MAC addresses and identifiers
in the network. While easy in small networks, challenges arise
in larger networks such as a large enterprise data center with
many physical servers and virtual machines, each with several
MAC addresses. The number of MAC addresses may exceed
the MAC table capacity of a switch, and increase the delay of
MAC table look ups.

To improve scalability, VLANs may be used to divide a
network into segments, each forming an isolated L2 broadcast
domain. MAC learning then occurs within a VLAN, reducing
MAC table size. L3 routing is used to connect VLANs.

Another method to improve scalability is to group core
switches into domains called network fabric. In Fig. 5,
switches S5, S6 and a subset of ports on switches S1–S4
(customer edge switches) form a fabric and run an L2 routing

protocol, e.g., Intermediate System to Intermediate System (IS-
IS) [33], to learn the fabric network topology. In Fig. 5, a
frame from A to B is encapsulated with an outer header with
S1 as source address and S4 as destination address. The outer
header usually introduces TTL to prevent indefinite forwarding
within the fabric. Each customer edge switch learns all local
MAC addresses and some remote MAC addresses; S5 and
S6 learn no end-user MAC address. Example network fabric
implementations are Transparent Interconnection of Lots of
Links (TRILL) [34] and Shortest Path Bridging (SPB)—see
IEEE 802.1aq [35].

Fig. 5. L2 network with network fabric

1) Attacks: VLANs are subject to VLAN hopping attacks—
traffic from one VLAN can be received by another, allowing
L2 attacks against one VLAN to be launched from a differ-
ent VLAN. One attack strategy is VLAN double encapsula-
tion [36]. Another attack strategy is to exploit switch miscon-
figuration or VLAN auto negotiation protocols to impersonate
another switch. In this way, a malicious host can pretend
to be a switch and the link between the host and a switch
would appear to be a trunk link, allowing the host to send
and receive packets with any VLAN tag. Thus, the network
isolation provided by VLAN is completely broken.

There are multiple means for implementing L2 network fab-
ric, e.g., TRILL and SPB, all of which use a routing protocol,
typically IS-IS, to automatically discover and maintain the
network topology inside the fabric. IS-IS is subject to several
attacks, such as PDU spoofing, and DoS due to replaying hello
messages [37], [34].

2) Defenses: VLAN-related vulnerabilities may be miti-
gated by disabling VLAN auto-negotiation, and configuring
VLAN filtering in UNIs. Note that a packet may contain more
than one VLAN tag; all such tags should be filtered if present
in packets received from UNIs.

IS-IS vulnerabilities may be mitigated by enabling addi-
tional IS-IS cryptographic authentication [33], and ignoring
unauthenticated PDUs. Further, IS-IS messages received from
UNIs should be dropped.

Summary and Insights. This section reviewed the main
protocols implementing L2 Ethernet networks, namely: MAC
learning that enables targeted switch forwarding, STP protocol
for loop prevention, LACP protocol for grouping and utilizing
network links, device redundancy protocols like Cisco’s switch



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 7

stacking, and the usage of VLANs and TRILL fabrics for
virtual network isolation thus enabling L2 scalability. Insights
upon analyzing the discussed security threats and their de-
fenses against each protocol are given in Section VII and
Section VIII below.

V. L3 NETWORKS

As with L2 networks, we analyze security threats and
mitigations for L3 networks related to each property in our
framework (Section III). See Section VII and Section VIII for
discussions and insights.

A. Basic Forwarding

L3 devices, namely routers, perform two main tasks: route
learning and packet forwarding [38]. In simple networks where
two or more subnets are connected by a single router, the
routing table is usually manually configured without running
any routing protocol. A packet sent from one subnet to another
has a destination MAC address of the default gateway of
the source host, thus always arrives at the router via one of
its interfaces. A router, upon receiving a packet from one
subnet destined to another, performs three actions: removes
the packet’s L2 header, looks up the routing table for the next
hop, and encapsulates the packet with a new L2 header for
forwarding. A next hop in a routing table could be a local
interface or an IP address. Routing table lookups are recursive
until a next hop is a local interface. In this case, it further looks
up the ARP table associated with that interface for the MAC
address of the packet’s next hop IP address. If not found, the
router uses ARP to obtain the MAC address.

1) Attacks: Since an L3 router uses ARP to resolve the
MAC address of a packet’s destination IP, it is subject to
ARP cache poisoning attacks [39]. This enables the attacker
to associate its IP address with another (victim) MAC address,
and thus receive the traffic intended for the victim’s device.

2) Defenses: There are several approaches to address ARP
cache poisoning. Dynamic ARP Inspection (DAI) [40] is a
mechanism by which ARP responses are checked against (1)
a central DB that binds IP to MAC addresses (this may be
populated by listening to DHCP requests and responses in the
network); or (2) static pre-configured ARP entries.

Cryptographic measures can also be used to distribute pre-
populated IP-to-MAC-address mapping attestations, such as
Ticket-based ARP (TARP) [41]. A voting-based protocol,
requiring network consensus before updating ARP entries, has
also been proposed by Nam et al. [42].

B. Loop Free Forwarding

In networks with multiple routers and redundant physical
paths, a routing protocol is often used to advertise and learn
routing information. Routing protocols are either link state
(e.g., IS-IS, OSPF—Open Shortest Path First [1]) or distance
vector (e.g., RIP—Routing Information Protocol [43]).

1) Attacks: While attack methods vary among different
routing protocols, a common attack objective is routing table
poisoning—to pollute network topology information and de-
rived forwarding tables by advertising or injecting false routes
through announcements. For example, a malicious router could
advertise a malicious Link State Advertisement (LSA) (e.g.,
with a false link cost) to influence other routers’ calculation
of routing tables. Such attack is easy to launch but has limited
impact since a neighboring router will eventually advertise a
correct LSA with a fresher sequence number, resulting in the
removal of the falsified LSA from being used for routing table
calculation. More advanced attacks (cf. [44]) can be launched
to increase the effectiveness of routing table poisoning.

2) Defenses: To mitigate routing table poisoning attacks,
three levels of defenses should be considered. First, routing
protocols should only run in NNIs (routing updates received
from UNIs should be dropped). This is to prevent an outsider
(e.g., a host) from participating in routing protocol commu-
nication. Second, message origin authentication should be
implemented to prevent a malicious (compromised, previously
legitimate) router from impersonating another router. Third,
routing updates should be corroborated when being used to
calculate routing tables. For example, a link cost advertised by
one router should be corroborated with the link cost advertised
by the other router on the same link.

C. Link Redundancy

L3 networks usually provide link redundancy through rout-
ing strategies like Equal Cost Multiple Path (ECMP) rout-
ing [45], [46], which allow packets to a common (i.e., the
same) destination address to be routed to their next hops over
multiple links of equal cost.

1) Attacks: Multipath routing is a local decision made
within a single router, requiring no interaction with adjacent
or remote routers. Thus, it neither requires control protocols
nor appears to introduce new security threats, other than link
DoSing [46].

D. Device Redundancy

If a gateway router goes down, traffic across different
subnets will be unable to reach their destinations, result-
ing in service outage. To improve availability, two or more
routers often share a common virtual IP address and run a
control protocol such as Virtual Router Redundancy Protocol
(VRRP) [47] to dynamically elect a master as the default
gateway of a subnet. When a master fails, VRRP dynamically
selects another router as the master. VRRP runs over IP with
an IP multicast address as its destination.

1) Attacks: Protocols for high availability routing such
as VRRP [47] are subject to spoofing attacks. For example,
VRRPv3 [47] does not include authentication of VRRP
messages, thus an attacker may send a spoofed VRRP
message with the highest priority to become the master of the
router cluster. Such an attacker will receive all traffic to and
from a subnet. While the previous versions of VRRP [48],
[49] do include message authentication, it was removed from
version 3 because it could be exploited to result in (malicious)



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 8

election of multiple masters [47]. Other attacks, such as ARP
spoofing, exist which could result in the same attack effect
(e.g., becoming the gateway of end hosts) [47].

2) Defenses: Dropping VRRP messages that arrive from a
host-connected port prevents an attacker sitting at the network
edge from spoofing such messages [47]. Additionally, VRRP
message includes a TTL set to 255 by default. Upon receiving
a VRRP message, a router validates the TTL field and discards
a VRRP message whose TTL is not equal to 255. This limits
the ability of remote attackers (e.g., outside of a network) from
spoofing VRRP packets.

E. Scalability

Within an AS, scalability in L3 networks is provided
using routing protocols, supported by hierarchical routing. For
example, OSPF allows a large network to be divided into sub-
domains (OSPF areas). Routers within an OSPF area need
only maintain network topology information of the area they
belong to. A backbone OSPF area is used to connect all other
areas. Thus routing advertisements are limited to within an
area, reducing the size of routing databases. Between ASes,
BGP is used to advertise network reachability information.

Security threats of routing protocols, and their mitigation,
are discussed in Section V-B above.

Summary and Insights. In this section, we discussed
common protocols implementing L3 network functionalities.
Those include: ARP to allow proper L2 addressing and thus
forwarding across multiple subnets, routing protocols such as
RIP and OSPF for loop-free routing, ECMP for routing along
multiple paths and thus better utilization, VRRP for router
redundancy thus increasing availability in case of equipment
failure, and hierarchical routing across separate network do-
mains providing network scalability. See Sections VII and VIII
for insights upon analyzing and comparing the attack surfaces
and defenses of these protocols with their counterpart in SDNs.

VI. SOFTWARE DEFINED NETWORKS

In SDN, the control plane of a device is implemented in
an external entity, as opposed to within the device in a CN.
This architectural difference impacts how network properties
from our framework are provided. In CNs, a property achieved
in the data plane is also considered achieved in the control
plane. This does not hold in SDN due to the separation of
planes. Thus for SDN, we discuss separately how each network
property is provided for the data and control planes. We use
OpenFlow switches [50] as an example in our discussion.

A. Basic Forwarding

Here we consider how a single SDN controller, controlling
a single OpenFlow switch connected with a number of hosts,
learns forwarding information. We assume that the controller
has a direct connection with the switch, thus no need to learn
about this control connection.

To configure the switch to provide connectivity among
connected hosts, the controller must learn the mapping be-
tween hosts (e.g., their MAC addresses) and switch ports. To
do so, the controller may configure the switch to forward
ARP requests and unknown packets, to the controller. An
OpenFlow switch forwards such a packet to a controller using
the PACKET_IN message, which includes the switch port
from which the packet is received. The PACKET_IN message
provides the controller with information about which hosts
connect to which switch ports. If a destination host is also
unknown, the controller instructs the switch to flood this
packet using a PACKET_OUT message. The response from
the destination will also be sent to the controller, allowing the
controller to learn the location of both hosts. As a result, the
controller can set up flow rules for the pair to communicate.

This learning process by a controller, called Host Tracking
Service, is equivalent in principle to MAC learning by an
L2 switch. It demonstrates how a conventional L2 control
function is taken out from a switch, and implemented inside a
controller. One difference is that MAC learning, being L2, only
learns MAC addresses (possibly VLAN IDs). OpenFlow can
learn both L2 addresses (MAC address and possibly VLAN
ID) and IP addresses. We call this process Host Learning, for
better comparability with MAC learning.

1) Attacks: Host learning by a controller, being based on
information provided by a switch and hosts, is thus subject
to spoofing attacks (MAC spoofing, IP spoofing, VLAN tag
spoofing), since a dishonest host or switch can forge such
information inside a packet. Often called Host Location Hi-
jacking [11], here we call it Host Profile Poisoning for better
comparability with MAC table poisoning. Host learning is
also subject to flooding attacks—an attacker may generate a
large number of packets with arbitrary MAC and IP addresses,
resulting in creating (1) a large number of host profiles inside
the controller, (2) a large number of messages sent to the
controller, and (3) a large number of flow tables inside a
switch. Thus, it is possible to cause DoS or packet interception,
as unknown packets are also flooded. For example, if the
memory allocated for host profiles in a controller is full,
an existing host profile (e.g., the oldest) will be overwritten,
resulting in the flooding of a new packet destined to that host.
This resembles an L2 MAC flooding attack.

Host-learning messages between switches and the controller
may be exploited to cause a message forwarding loop.

2) Defenses: MAC binding (discussed earlier) can mitigate
MAC spoofing attacks, albeit requiring static configuration.
MAC limiting (also discussed earlier) can mitigate MAC
flooding attacks, but cannot prevent MAC spoofing.

To mitigate VLAN spoofing, an OpenFlow switch can
designate its ports as UNIs and NNIs, and remove VLAN
tags in packets received from UNIs. Note: since there is only
one switch, NNIs will not receive any traffic but the defense
still works in the case of multiple switches. If the port an
SDN controller connects to cannot be determined, and the
controller needs to tag traffic for some reason, this defense
becomes problematic.

To mitigate IP spoofing, OpenFlow controllers could avoid
the learning of IP based forwarding rules from the data plane



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 9

by planning IP address assignment and configuring flow tables
with IP prefixes, acknowledging that prefix matching might be
slower than precise matching.

B. Loop Free Forwarding

Here we consider a single controller controlling a number
of OpenFlow switches (Fig. 6).

Fig. 6. An SDN with multiple switches.

To configure forwarding tables on OpenFlow switches, the
controller must first learn the network topology using a control
protocol such as OpenFlow Discovery Protocol (OFDP). There
are two scenarios to consider. (1) There exists a dedicated
control network (e.g., a direct link between each switch and the
controller) such that each OpenFlow switch can communicate
with the controller, e.g., by establishing a TLS connection
with the controller. (2) No such dedicated control network
exists, and the controller must discover all switches and set
up proper flow tables so they can begin communicating with
the controller to receive further flows.

In case (1), the switch initiates communication with the
controller during a boot-up process. The controller thus obtains
information about individual switches under its control without
running any control protocol. However, the controller does
not know the connectivity between switches, i.e., the network
topology. In case (2), the controller does not know which
switches are under its control and must use a protocol to dis-
cover them (cf. [51, Section 3.3]). Here we consider case (1),
which is also commonly studied in other papers (e.g., [11]).

OFDP works as follows. First, the OpenFlow controller
sends a Link Layer Discovery Protocol (LLDP) [52] packet
(inside a PACKET_OUT message with output port set to ALL)
to every switch under its control. A switch receiving such
a message floods to all of its ports. A switch receiving an
LLDP packet from a neighbor switch must forward it to the
controller, e.g., due to the absence of flow rules for processing
such a packet, triggering a default rule for forwarding un-
known packets to the controller, or the existence of an explicit
flow rule for forwarding LLDP packets to the controller. This
PACKET_IN message to the controller also includes the port
number that receives the LLDP packet. Thus, the controller
discovers a link between two switches, and subsequently all
links between all switches, allowing completion of a complete
network topology.

1) Attacks: An OpenFlow controller, discovering network
topology by learning from LLDP packets [52] sent by
switches, is thus subject to LLDP spoofing attacks. An at-
tacker, a switch or a host, may send falsified LLDP packets to
a controller to contaminate computation of network topology.

For example, a host may send falsified LLDP packets to insert
itself and create non-existent links into the topology. This is a
Link Fabrication Attack [11]. LLDP flooding may also force
a controller to continuously re-calculate network topology,
disrupting service.

2) Defenses: To mitigate LLDP spoofing from hosts, an
OpenFlow switch can designate its ports as NNIs and UNIs,
and reject LLDP packets received from UNIs. This defense
would work if the port an SDN controller connects to is
prior known. Otherwise, it will be problematic, since LLDP
packets to and from the controller might also be filtered.
Message authenticity and integrity, if implemented by LLDP,
can effectively mitigate LLDP spoofing by hosts. Consistency
checks of LLDP packets by a controller can mitigate LLDP
spoofing by a host or switch. See Section VII-B for discussion
on how to mitigate attacks from an SDN controller.

C. Link Redundancy

We note two options for implementing link aggregation for
two OpenFlow switches with multiple physical links between
them. (1) The OpenFlow switches, just as an L2 switch, run
LACP between them to create a virtual link presented to the
OpenFlow controller during link discovery. (2) An OpenFlow
controller discovers shared links between two switches and
uses a group table (available in OpenFlow v1.3 and later) to
distribute traffic among a set of switch ports within a group.
Here the OpenFlow controller must monitor the status of all
links and update a corresponding group table upon detection of
a link state change. Note: if an OpenFlow switch shares multi-
ple links with a conventional switch or host running LACP, the
OpenFlow switch can be configured to pass LACPDUs from
the conventional switch to the controller to be processed. We
consider the second case, since a switch implementing LACP
is considered hybrid rather than pure SDN switch.

1) Attacks: An SDN controller is subject to message spoof-
ing attacks. For example, an attacker may send false link up
and down events to a controller, to manipulate the state of a
link group. Such spoofing may be from a switch or host.

2) Defenses: Link state events should only be sent from
OpenFlow switches, not hosts. If the port an SDN controller
connects to is prior known, such events if received from
other UNIs should be dropped. Message authenticity and
integrity, if implemented by OpenFlow events, can effectively
mitigate spoofing by hosts or switches. Consistency checks of
OpenFlow events, if implemented by a controller, can detect
falsified events by a host or switch.

D. Device Redundancy

For redundancy among a group of OpenFlow switches, a
controller could monitor the status of each switch, and update
switch configurations and flow tables accordingly to allow traf-
fic go through a new switch. For redundancy among a group of
OpenFlow controllers, OpenFlow switches are configured with
multiple controllers. When the current controller goes down,
a switch establishes a connection with the next controller. A
distributed election protocol can also be used to elect a master
controller, often for SDN applications. When the master fails,



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 10

another slave replica becomes the master. The result of such
master election can also be synchronized into the switch’s
configuration of controller preference to ensure all switches
are also controlled by the same master. For example, ONOS
uses ZooKeeper [53], a tool implementing an election protocol
for distributed coordination and election. OpenDaylight uses
Akka and Raft [54] for master election.

Further, controller states must also remain synchronized
among controllers. For example, ONOS implements an even-
tual consistency model [55], in which a background process
updates written objects in all replicas periodically.

1) Attacks: Beside spoofing attacks against device redun-
dancy (cf. Section VI-C1), an election protocol used by con-
trollers to achieve redundancy is subject to spoofing attacks.
First, a non-controller entity (e.g., a host) may join the election
process to cause undesirable results. Second, a misbehaving
controller may be able to manipulate the master election
process (e.g., by manually picking the smallest allowable time
before candidacy election) to become the next master.

For example, Akka used by OpenDaylight for controller
clustering employs no default security mechanisms [56], e.g.,
for integrity protection of inter-cluster messages. In ONOS,
we note no security mechanisms are used to ensure the
integrity of update information. A timestamp may be forged,
and if replicas are not properly authenticated, an attacker may
impersonate one of them and manipulate stored objects.

2) Defense: If the ports SDN controllers connect to are
prior known, election messages if received from other UNIs
can be be dropped. Otherwise, message origin authentication
and integrity need to be implemented for the election protocol
and state replication, e.g., using mutually authenticated TLS
among controllers, to prevent an outsider from participating
in or tampering with the election process. Additional mecha-
nisms, e.g., information corroboration, are also needed to miti-
gate attacks by a misbehaving controller (e.g., compromised by
an attacker) participating in election with forged information.

E. Scalability

Unlike CNs, which run control protocols such as IS-IS to
implement a network fabric for scalability and other benefits,
OpenFlow controllers can configure flow rules in a way to
improve scalability. For example, an OpenFlow controller may
configure: (1) encapsulation rules at ingress switches, (2) for-
warding rules based on outer headers at intermediate switches,
and (3) decapsulation rules at egress switches. In this way,
the controller creates tunnels shared by many individual flows
and the intermediate switches only need to be configured with
the rules related to tunnels, not individual flow, significantly
reducing the number of rules required. Edge switches (ingress
and egress) also only need to be configured with the rules
relevant to the end hosts connected to them. In this way,
OpenFlow controllers may create a network fabric without
need of running additional control protocols.

Scalability in the SDN control plane can be provided by
dividing a network into areas or domains, each controlled
by one or more controllers. Controllers could be peer-to-
peer or hierarchical. In a peer-to-peer model, area controllers

synchronize states among themselves so that each maintains a
consistent global view of the network. In a hierarchical model,
lower level controllers maintain a subset of the global view;
only a top level controller has the global view.

Distributed controllers need to communicate with each other
to exchange reachability and state information. There is cur-
rently no standard defined for inter controller communication.
A distributed protocol is usually needed. For example, BGP
is suggested to be the message exchange protocol among
SDN controllers [57]. ONOS relies on a distributed databases,
e.g., Cassandra [58] and Distributed Hash Tables (DHTs), for
distributing network topology and state information among
controllers.

1) Attacks: Vulnerabilities may arise from distributed com-
munication in a peer-to-peer model, or from controller-to-
controller communication in a hierarchical model. For exam-
ple, if BGP is used to exchange information among controllers,
vulnerabilities in BGP could be exploited to attack SDN.
Vulnerabilities could also arise from the distributed database if
it is used for synchronization among controllers. For example,
without proper configuration, Cassandra may be vulnerable to
query injection attacks [59].

2) Defense: As with any other distributed protocol such
as an election protocol, communication among controllers,
either peer-to-peer or hierarchical, must provide data origin
authentication and message integrity to prevent outsiders from
participating in or tampering with the communication. Further,
an additional mechanism such as information corroboration
is needed to mitigate misbehavior by legitimate controllers.
This may also mitigate the effect of a compromised controller.
Note, unlike in a simple network where the ports to which
controllers connect to can be prior known, it is hard to define a
communication boundary for distributed controllers to prevent
outsiders from participating in the election process.

Summary and Insights. Upon discussing how each net-
work property in our framework (Section III) is implemented
in OpenFlow networks, we found that the mechanisms im-
plementing them are similar in nature to their counterparts in
L2 and L3 networks. For example, the host tracking service
employed by OpenFlow controllers allows the controller to
automatically learn about host locations in the network after
these hosts initiate traffic, i.e., similar to MAC learning. For
the controller to set up loop-free flows, it has to first learn
about the network topology using LLDP. OpenFlow switches
run LACP for link aggregation, similar to L2. Controller
redundancy is achieved by configuring OpenFlow switches
with multiple controllers, and synchronously electing a master
controller, i.e., similar to VRRP router election on L3. In addi-
tion to controller redundancy, scalability in SDNs also requires
hierarchical clustering of the network (cf. L3 scalability). In
the following two sections, we likewise raise the question
of whether the nature of threats and defenses is also similar
for each of these mechanisms, and whether the threat model
necessitates different handling of threats in SDNs and CNs
(L2 and L3).



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 11

VII. SDN VERSUS CONVENTIONAL NETWORKS: LESSONS
LEARNED

Table I summarizes the control functions, attacks and de-
fenses noted above. We also cite references in the table,
where we are aware of suitable references, pertaining to the
respective network property. We now discuss lessons learned
upon comparing attacks and defenses of CN and SDN control
planes following each of the two threat models in Section III,
namely END-HOST and ALL-ELEMENT.

A. Basic Forwarding

MAC table poisoning (against a CN switch) and host profile
poisoning (against an SDN controller), the two major threats
respectively, are similar in nature but differ in details. For
example, the attack vector of MAC table poisoning is MAC
address spoofing, while both MAC and IP addresses could be
spoofed in host profile poisoning. Since an L3 router with
manually configured routing table does not learn forwarding
information from the data plane, it is not subject to IP spoofing
attacks. Another subtle difference is related to the size limit
of the MAC table and memory allocated to host profiles when
flooding is employed. MAC table size could vary from a few
thousand to a few million entries, depending on the vendor
and model of a switch; an SDN controller usually has larger
memory and is thus less vulnerable to such flooding.

A CN is also less vulnerable to DoS attack (than an SDN
network) because the SDN controller itself is a new attack
surface, as is the link between a switch and an SDN controller,
which could become a new bottleneck [60].

Defenses for MAC and host profile poisoning are similar.
For example, port security could be used in a relatively static
network to bind switch ports with MAC addresses for both
CN and SDN. In a dynamic network where MAC addresses
often change (e.g., in a data center with server virtualization),
static binding is problematic for both paradigms.

We do not discuss the ALL-ELEMENT threat model here
since this simple network consists of only one switch and
one controller. If the switch or the controller is malicious, the
network would be completely compromised.

B. Loop Free Forwarding

Conventional L2 and L3 networks use STP and routing
protocols (such as OSPF) for loop free forwarding. SDN uses
LLDP for topology discovery.

In the END-HOST threat model, an end host can attack both
CNs and SDN, resulting in incorrect forwarding tables by
exploiting protocols’ vulnerabilities. While the impact from
such attacks appears comparable, attack techniques will differ
since the protocols exploited differ.

Defenses for CNs can rely on UNI filtering. However, that
works in SDN only if the attach points of the SDN controller
are prior known and remain static. Otherwise, UNI filtering is
ineffective and cryptographic mechanisms are required in SDN
to prevent outsiders from participating in topology discovery.

In the ALL-ELEMENT threat model, the network (e.g., L2
or L3 device and SDN controller itself) could be malicious;

attacks and defenses then appear similar for CNs and SDN,
albeit with subtle differences. From a threat model perspective,
a malicious CN device or an SDN controller may be able to
compromise the entire network (e.g., influencing the routing
table of any device within the network), acknowledging that
a malicious SDN controller appears capable of causing more
damage.

From a defense perspective, data origin authentication, mes-
sage integrity, and consistency checks are all required by both
CNs and the SDN control plane to counter insider attacks (e.g.,
to detect and discard false information received from other
legitimate nodes). In CNs, consistency checks can be done
inside individual devices. In SDN, consistency checks should
be done by both switches and controller. First, an OpenFlow
switch should validate LLDP messages to ensure that it does
not contain false information (e.g., a faked link between the
sender and the receiver). Second, an SDN controller should
validate LLDP messages to rule out faked nodes and faked
links. However, new defenses are needed to mitigate or reduce
threats of a controller misbehaving in doing network topology
discovery and route calculation. It appears difficult to contain
damage from a misbehaving controller if it is monolithic.
Thus, a controller is better divided into small, independent
units to minimize the threat from a misbehaving control unit
and facilitate cross-checking the behavior of each unit.

If adopted for SDN controllers, a micro service architec-
ture [61] can serve this purpose. As an example of such
an architecture, the control function providing loop free for-
warding can be implemented in three micro services; the
first is collecting and validating LLDP messages; the second
is performing topology and route calculation; the third is
updating flow rules in switches. Each micro service runs
multiple instances, each of which cross-checks requests and
responses from multiple other service instances. To cross-
check behavior of flow rule updating services, other types of
services such as real time flow validation (e.g., VeriFlow [62])
can be implemented.

C. Link Redundancy

A CN uses LACP for link aggregation; an SDN controller
can monitor link state changes, and update link groups in a
switch accordingly. Both are vulnerable to message spoofing
and tampering attacks.

In the END-HOST threat model, rules can be configured on
UNIs to filter LACPDU packets for CNs. If the attach points
of the SDN controller are prior known and static, rules can
also be configured to filter link up/down events for SDN.
Otherwise, cryptographic mechanisms are required by SDN
to prevent outsiders from sending link up/down events to the
SDN controller.

In the ALL-ELEMENT threat model, message origin au-
thentication and message integrity can be used to address a
legitimate switch spoofing a link group member. If a link group
member itself misbehaves, it falls short for the other member
to maintain a correct link group state since the misbehaving
end can manipulate packets (e.g., selectively dropping them)
to achieve the same end.



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 12

NETWORK PROPERTIES
CONVENTIONAL NETWORKS SDNLAYER-2 LAYER-3

Control Functions

Basic Forwarding MAC Learning Static routes, Address
Resolution Protocol (ARP) Host Location Learning

Loop Free Forwarding Spanning Tree Protocol (STP) Routing Protocols (OSPF, RIP)
Link Layer Discovery Protocol
(LLDP) and OpenFlow Discovery
Protocol (OFDP)

Link Redundancy Link Aggregation (LACP) Equal Cost Multiple Path
(ECMP) Controller

Device Redundancy Switch Stacking Virtual Router Redundancy
Protocol (VRRP) Election Protocol

Scalability
VLAN, Network fabric
(TRILL, VxLAN)

Routing Protocols (OSPF,
IS-IS) BGP, distributed DB

Attacks

Basic Forwarding
MAC table poisoning (MAC
spoofing and MAC
flooding) [22]

ARP table poisoning [39] Host profile poisoning [11]

Loop Free Forwarding
BPDU spoofing, tampering and
flooding [29], [23]

Routing advertisement
spoofing [44] Link fabrication [11]

Link Redundancy LACPDU spoofing [31] Link DoSing [45] Spoofed link-manipulation
messages (e.g., [31])

Device Redundancy Stacking spoofing VRRP message spoofing [47] Master election manipulation [56]

Scalability
VLAN hopping [36]; Switch
impersonation [36]; Routing
advertisement spoofing

Routing advertisement
spoofing [44] BGP attacks, distributed DB attacks

Defences

Basic Forwarding
Port Security [27]; MAC
binding and limiting

Dynamic ARP inspection
(DAI) [40]; Ticket-based ARP
(TARP) [41]; Voting-based
protocols [42]

MAC binding, host location
validation [11]

Loop Free Forwarding
Root Guard [30]; BPDU
filtering (prevent a host from
masquerading as a switch)

UNI filtering and consistency
check of routing advertisements

UNI filtering of LLDP
packets [11], Authentication of
LLDP and OFDP packets

Link Redundancy
LACP source port
authentication (data plane
implementation)

N/A
UNI filtering of control messages,
mutual authentication of control
channel

Device Redundancy
Run master election process on
dedicated ports, authenticate
devices involved in the process

UNI filtering of VRRP
messages, TTL checks

Authenticity and integrity in master
election

Scalability
VLAN filtering on UNIs, and
disabling VLAN auto
negotiation

UNI filtering and consistency
check of routing advertisements

Authenticity and integrity in
communication among SDN
controllers

TABLE I
A SUMMARY COMPARISON BETWEEN CONVENTIONAL NETWORKS (CNS) AND SDN.

In SDN, message origin authentication and integrity, e.g., by
mutually authenticated TLS, can mitigate a legitimate switch
spoofing another switch by sending the controller faked link
up and down events. Further, the function controlling link

redundancy can be implemented in micro services, several
running simultaneously to cross-check each others’ behavior.



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 13

D. Device Redundancy

Both L2 and L3 use an election protocol to exchange
messages among a device group to elect a master, thus being
subject to spoofing attacks. In SDN, an election need not be
implemented in switches for data plane redundancy, but is
required for controller redundancy.

In the END-HOST threat model, rules can be configured on
NNIs to filter control messages from end hosts. If the attach
points of the SDN controller are prior known and static, such
an approach can also be employed for SDN. Otherwise SDN
requires message origin authentication and message integrity
to counter outsider attacks.

In the ALL-ELEMENT threat model, message origin authen-
tication and message integrity are required to prevent one
legitimate device from impersonating another. An additional
mechanism appears required to detect a legitimate device from
participating in an election using false information. A similar
mechanism appears required in SDN.

E. Scalability

For scalability in CN and SDN, respectively, routing proto-
cols such as OSPF and BGP can be used. They are subject to
similar attacks. Regarding defenses, the network boundary can
be defined for CN to discard control messages from end hosts
in the END-HOST threat model. In SDN this is less effective
since SDN controllers often run insider servers that connect to
the edge of a network; SDN controllers require cryptographic
mechanisms to prevent outsiders from participating in the
routing protocols.

In the ALL-ELEMENT threat model, to detect inside attacks,
CNs and SDNs require message origin authentication and
message integrity, as well as consistency checks.

VIII. DISCUSSIONS AND FURTHER INSIGHTS

Our work shows that conventional networks and SDNs face
similar threats on the control plane, i.e., the mechanism for
conducting attacks under the same threat model is comparable.
Despite that, the two network paradigms necessitate different
defenses. We observe the following from our analysis in
Section VII. In the END-HOST threat model, conventional
networks can define a network boundary to filter control
messages from end hosts (cf. the effectiveness of “filtering-
based” defenses for conventional networks in Table I). This
approach is less effective in SDN—its control plane is im-
plemented in SDN controllers, which are usually connected
to the edge of the network; their attaching points, similar to
end host locations, may change unless there is a dedicated
control network separate from user networks. Thus, SDN
largely requires cryptographic protection to prevent outsiders
from participating in the control plane.

In the ALL-ELEMENT threat model, both conventional net-
works and SDN require cryptographic mechanisms, as well
as consistency checks to mitigate insider attacks. This can
be deduced from the Defences part in Table I, where data
origin authentication (e.g., LACP source port authentication,
LLDP and OFDP packet authentication), mutual peer entity
authentication (e.g., between switches in CNs, along the SDN

southbound control channel, and among SDN controllers in a
physically distributed control plane), and integrity protection
mechanisms (e.g., in the master election process in STP and
among distributed SDN controllers, and of LLDP messages for
topology discovery in both SDNs and CNs) are cryptography-
based techniques. Likewise, DAI, host location validation [11],
and Port Security [27] are examples of consistency checking.

On the other hand, it can be noticed that where and how
to implement cryptography and consistency checking differ
in conventional networks and SDNs. While straightforward
consistency checks might be implemented within individ-
ual CN devices, it is less obvious where and how to do
this in SDN. Our analysis suggests that a highly modular-
ized and distributed SDN software architecture may facilitate
consistency checks, improving SDN control plane security
(cf. Section VII-B, including for modularization based on
micro service architecture). As noted earlier, current SDN
controllers (e.g., ONOS, OpenDaylight) lack mechanisms to
mitigate insider threats.

IX. RELATED WORK

To complement the preceding comparative analysis, we
discuss relevant literature for security in SDN and counterparts
in conventional networks (CNs). We also summarize surveys
in the literature that focus specifically on SDN security.

A. Control Plane

1) Security-oriented controllers: As one of the first network
operating systems, NOX [63] provides greater flexibility to the
management plane. Despite lacking the ability to undertake
most network functionalities by itself, NOX aims to provide
sufficient APIs to ease the fulfillment of such functions. Porras
et al. [12] proposed SE-Floodlight, a security enhanced system
based on Floodlight [64]. Network administrators manually
assign roles to applications, while SE-Floodlight mediates
all OpenFlow operations to enforce a role-based permission
model. SE-Floodlight also provides authentication and flow
conflict resolution services (based on FortNOX [65]), both
occurring on the system level independent of the applications,
to enforce privilege separation (cf. also PermOF [66]). Shin et
al. [67] identified several reasons for controller weaknesses,
including lack of (1) resource control, (2) application sepa-
ration, (3) application authentication and authorship, and (4)
access control, and presented Rosemary as a (non-monolithic)
micro-NOS to address these shortcomings.

2) Control plane security extensions and APIs: Many se-
curity extensions to SDN controllers have been proposed to
monitor and detect suspicious network behavior. VeriFlow [62]
and FlowVisor [68] are two examples. The former provides
real time checking and verification of forwarding behavior,
whereas the latter enables network slicing such that each slice
is typically under a different control domain, thus providing
logical separation of multiple controller instances (cf. [69]).
For such multi-slice networks, FlowChecker [70] is an exam-
ple of a tool that checks consistency across multiple slices.

In contrast to VeriFlow, FlowGuard [71] is a firewall for
SDNs that specifically focuses on conflict resolution. Note that



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 14

SE-Floodlight resolves conflicts only between flows, whereas
FlowGuard resolves conflicting network policies in general.
To address the source-binding problem within the network,
FlowTags [72] enables switches to tag packets for appropriate
source binding, avoiding conflict with middleboxes in the
network. Kim et al. [73] proposed Kinetic to not only monitor
network properties, but also enable administrators to take
appropriate control actions in response to network changes,
and to analyze source of errors in control programs leading
to the undesired network behavior. Similarly, Flover [74] and
NetPlumber [75] are systems to verify that flow policies do
not contradict with desired network security policies.

The proper extent of privileges that should be granted
to an SDN application is unclear. Excessive privileges may
constitute a significant weak point if an application becomes
compromised or is malicious [76]; too few may not allow
sufficient flexibility to run security applications. Fresco [5]
is a framework for developing security SDN applications,
providing APIs for developers to access sensitive network
resources securely. Similarly, OperationCheckpoint [77] aims
to secure the network against third party applications by
ensuring that critical operations can be executed by trusted
applications only.

3) Attack Mitigation: Benton et al. [78] highlight the
importance of isolating applications running on top of the
controller and the importance of verifying flow tables, to avoid
erroneous controllers (including errors introduced without a
malicious intent). Braga et al. [79] showed how machine
learning can be used to identify traffic involved in a DoS at-
tack. BASE [80] was proposed as an anti-spoofing mechanism,
aiming to mitigate DoS. SD-Anti-DDoS [81] is another tool
used to clean bloated flow tables after a DoS attack.

4) Proposals for control plane scalability: To ensure scala-
bility and fault tolerance, numerous proposals advocate repli-
cation and distribution of the control plane [82], [83], [84].
Onix [85] is a prominent example that abstracts the network
distribution state to the control plane running on top. Hy-
perFlow [86] allows multiple separate SDN domains to be
consolidated and controlled from a single point.

B. Data Plane

Despite SDN’s promise to ease management and service de-
ployment, it is becoming clear that not all services can simply
be implemented as applications on the controller. Depending
on the required levels of network support, some security solu-
tions in the literature propose either low-level modules running
in controller kernel space, or software running on switches.
These create challenges in managing/updating network ele-
ments, as is the case with CNs. The OpenFlow Extension
Framework (OFX) [87] leverages control plane centralization
to allow dynamic installation of software on switches.

1) Security services: Distinct from CNs, the centralization
of the control plane in SDNs challenges conventional means
by which gateway services, e.g., firewalls and IDSs, are set
up. For example, instructing edge switches to forward a copy
of the traffic to a separate IDS box would consume substantial
delay and bandwidth [88]. FleXam [89] is an OpenFlow

extension to enable a switch to send sample packets (including
payload) from a specific flow to the controller.

2) Handling compromised switches: Compromising an
SDN switch enables a wide range of MitM and impersonation
attacks [90]; detection in SDN however differs from CNs. Chi
et al. [91] implemented applications that periodically sample
flow rules, and check if a random subset of switches are
behaving as instructed.

3) DoS attacks: While SDN is considered more vulnerable
to DoS attacks [60] than CNs, mitigation techniques appear
to follow non-conventional solutions. For example, Flood-
Guard [92] rate-limits packets sent to the controller to protect
controller bandwidth from being consumed by intentional
PACKET_IN requests from clueless switches. SDNsec [93]
allows edge switches to encode whole routes on each ingress
packet, thus mitigating DoS by state exhaustion. Flow aggre-
gation [94] and flow time-out [95] are also widely regarded
as good practices to mitigate switch memory exhaustion.

4) MitM attacks: Sphinx [13] aims to counter security
threats from within an SDN network (e.g., from network
switches and end hosts) by building flow graphs to represent a
closed form of the network topology, and using these to detect
anomalous switch behavior. Another tool, TopoGuard [11],
aims to detect LLDP hijacking and MitM attacks, by validating
the network view seen by the controller, to mitigate host
location hijacking and link fabrication vulnerabilities.

5) Stateful SDN: FAST [96] and OpenState [97] are among
the first proposals to suggest the need to re-include some
intelligence back in switches. For the goal of increasing effi-
ciency by reducing the southbound communication overhead,
switches can retain some network state that enables them
to, e.g., identify and change flows without consulting the
controller. This can be performed programmatically, where
the controller enables the switch to know how to react to
packet changes. Stateful SDNs were found vulnerable to
several attacks [98], including exhaustion of the switch’s state
memory, and state inconsistency across multiple switches for
the same flow. The latter can be mounted from an end host,
by injecting specially tailored packets into the network.

C. Security Surveys

Kreutz et al. [99] made the first attempt to provide recom-
mendations on improving SDN security by discussing seven
threats against SDN and possible countermeasures. The threats
address each stage of communication between the switches,
controller, and applications, in addition to the interfaces within
these stages. The authors highlight the limitations of TLS to
secure communications to/from the controller, and the conse-
quences of a hijacked such session. The authors also point
out the issue of trusting networking applications, whereby a
compromised application could jeopardize the security of the
whole network.

Scott-Hayward et al. [100] surveyed the literature for poten-
tial control and data plane attacks and mitigation techniques,
listing security issues discussed so far. The authors catego-
rize research in SDN security as Analysis, Enhancement, or
Solution, providing information as to which bound (north or



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 15

south) is the research conducted on, and whether protocols
other than OpenFlow are analyzed. A set of security threats,
such as unauthorized access and data leakage, are enumerated
and mapped against each of the five SDN layers and interfaces.

Klöti et al. [94] used the Microsoft STRIDE model and
attack trees with the assumption that the controller, network
elements, and the control channel between the two are all
secure. They identify several possible threats including DoS
by overloading the flow table, information disclosure, and
tampering the flow table through cache poisoning. Information
disclosure might allow a host to deduce the flow states in an
OpenFlow switch by measuring the time difference in TCP
connection setup. If an OpenFlow switch to which both the
client and a TCP server connect implements flow aggregation,
a fast TCP setup could imply that an aggregated flow rule has
already been installed in the switch, which was likely triggered
by the communication to the TCP server from other clients
connecting to the same OpenFlow switch. While interesting,
it is not clear if such a side-channel attack will be effective
in a network with large number of switches. In general, some
flow states could be obtained by scanning the whole network
to reconstruct the network topology.

Alsmadi and Xu [101] similarly used the STRIDE model. In
a brief comparison with CNs, the authors [101] submit that the
DoS attack surface is larger in SDN, but should more easily be
mitigated through the controller. On the other hand, spoofing
is likely more controllable in SDN due to reduction in stale
information (such as ARP entries) that aid in spoofing. Finally,
the authors concluded that while the standard attacks are not
expected to differ substantially between SDN and CNs, SDN
appears to allow for a larger attack surface.

Ijaz et al. [102] similarly conduct a security survey, summa-
rizing efforts in the literature under the taxonomy: Application,
Control, and Data planes. Such a taxonomy helps the commu-
nity identify persistent weak spots in the paradigm, and where
future research efforts could and should be directed.

Ali et al. [103] similarly presented a survey of security
research in SDN, classifying the literature into either proposals
for protection against attacks, or further enhancing network
security. Many of the proposals falling under the former
category work towards threat detection and remediation (e.g.,
DoS and traffic anomalies), and verifying that the networking
is behaving the way it should; proposals of the latter category
utilize the SDN paradigm to provide security as a service,
such as enhancing online anonymity and outsourcing network
security management.

Schehlmann et al. [104] counted the number of security
aspects where SDN is better than CNs, and reached the
conclusion that SDN is generally better, after considering their
advantages over CNs. The authors [104] argue that the newly
added requirements of application authenticity and controller
availability count towards the negative factors (i.e., negatively
affecting SDN security). However, they concluded that overall
the security benefits offered by SDN outweigh the risk, and
that SDN does not introduce new types of threats nor require
new countermeasures—the paradigm rather needs to leverage
existing well-known security mitigation and technologies like
PKI for protection. While this evaluation is interesting, it

does not provide specific guidelines to SDN development
community on how to design and develop secure SDN.

Rawat et al. [105] summarized cases where an SDN can
act as a security solution for classical attacks like network
intrusions (e.g., SDNIPS [15]), anomaly detection, and DoS
detection (e.g., [106]). They also covered cases whereby
the three planes of an SDN can be attacked. Attacks were
classified as either spoofing, intrusion, causing network
anomalies, or DoS attacks.

Summary of surveys: The above surveys are useful in
summarizing the SDN security literature, showing how various
attacks on SDN can be mounted on different planes, and how
SDNs can be used to enhance network security. However, with
the exception of Klöti et al. [94], none of the above surveys
directly uses formal threat modeling to analyze how different
assumptions made about attackers can affect the feasibility of
these attacks. Klöti et al. [94] assumed an attacker model with
access to the data plane, and anlayzed two attacks following
the END-HOST model. In addition, the consequences of the
reviewed attacks are not always assessed in terms of the af-
fected network functionality. Our work complements existing
literature as it (1) filters out threats against specific network
properties, thus providing the ability of objective comparison
with CNs; and (2) clearly defines two threat models, enabling
an objective assessment to the difficulty of conducting the
respective attacks, and the measures required by practitioners
to protect against them.

X. FUTURE CHALLENGES AND RESEARCH DIRECTIONS

In this section, we discuss future research directions towards
understanding the control plane security of SDNs.

A. Other Threat Models
We provided an objective comparison between CNs and

SDNs across two threat models indicating the attacker’s po-
sition in the network. New and possibly finer-grained threat
models could be explored, such as an attacker compromising
a single (possibly unprivileged) application on the controller;
or compromising one switch versus many, and whether that
switch is edge (ingress or egress) or not. Such models can
help better understand situations where certain defenses would
be more effective than others, and possibly which paradigm
would be better for certain applications. In general, the five
properties provided in our framework provide a baseline for
further threat models to be analyzed against these properties.

B. Expanding Network Properties
The properties we analyzed herein are required by any

production network to operate successfully. It would therefore
be useful to also analyze threats introduced by mechanisms
implementing other network services. Examples include multi-
cast and anycast routing, Quality of Service (QoS), VPNs [17],
and other traffic engineering techniques. Those can be inves-
tigated on both network paradigms, CNs and SDNs, which
would allow for the comparison of threats and defenses across
both paradigms, analogous to the analysis conducted herein for
fundamental network services.



IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 16

C. Analyzing the Effect of Network Technologies

We have explored attacks and defenses when Ethernet
protocols implement the five properties in L2 networks. Other
technologies can also be evaluated as they implement these five
network properties, particularly for wireless communication.
Examples include the IEEE 802 family, including WiFi net-
works [107], and other wireless technologies showing potential
deployment for SDNs [108].

D. Distributed Robust Controllers

From use of our framework, it becomes clear that it is
crucial to design defenses withstanding the ALL-ELEMENT
threat model. That is especially true with the increasing
trends of virtualizing the network infrastructure, which is
facilitated by the proliferation of the SDN paradigm. Such
a virtualization makes network devices, e.g., switches, more
prone to compromise due to the fact that conventional network
boundary is disappearing thus it is difficult to enforce edge
based filtering in SDN. Future research in that direction should
thus aim to design modularized SDN controllers for partition
tolerance of control domains, with the aim of improving SDN
control plane security under the ALL-ELEMENT threat model.

E. Evaluating SDN Controllers in the Wild

An interesting research direction would be to use the new
framework for conducting a real-world comprehensive analysis
of current SDN controllers (e.g., OpenDaylight [7]) for the
security vulnerabilities and defenses discussed herein. Attacks
could particularly follow the two threat models defined herein,
or others as suitably required by target applications. Such
experimental testing helps researchers and practitioners grasp
the extent by which proposed solutions can withstand true
attacks in real-world environments.

XI. CONCLUDING REMARKS

This paper provides a framework allowing an objective se-
curity comparison between SDNs and conventional networks.
The framework consists of five network properties and two
threat models. The identified properties are critical for success-
ful operation of networks in practice, as they enable networks
to function efficiently, scale, and ensure the networks’ high
availability. The two threat models provide varying degrees
of adversarial capabilities, enabling the analysis of differences
and similarities in the attack surface of protocols implementing
each of the five properties in both network paradigms. To the
best of our knowledge, this is the first framework that allows
for such an apples-to-apples comparison of both paradigms,
exploring both attacks and defenses.

Previous literature compared the security of SDNs and con-
ventional networks either by focusing on less common func-
tionalities, or by enumerating the number of points/devices (in
the network) that are vulnerable to specific attacks, e.g., DoS.
Albeit useful to the academic research community, this does
not provide answers to practitioners of large production net-
works who are interested in migrating their data centers from
conventional networks to SDNs, but unable to grasp the nature

of their new threats. In contrast, by reducing the focus of the
analysis to the subset of properties that are likely implemented
by all production networks in practice, our framework helps
security researchers and practitioners understand and re-adapt
their currently implemented defenses in conventional networks
to suit the new SDN paradigm. The framework is useful to
both network administrators and security researchers; we thus
believe this work will help guide further SDN research, and
aid practitioners in the design, development, and deployment
of SDNs with stronger robustness and security properties.

ACKNOWLEDGMENT

We thank Yapeng Wu and Xingjun Chu for their con-
structive discussion and comments on this paper. The second
author acknowledges funding from the Natural Sciences and
Engineering Research Council of Canada (NSERC) for both
his Canada Research Chair in Authentication and Computer
Security, and a Discovery Grant.

REFERENCES

[1] J. Moy, “OSPF Version 2,” RFC 2328 (Internet Standard), IETF, Apr
1998, updated by RFCs 5709, 6549, 6845, 6860. [Online]. Available:
http://www.ietf.org/rfc/rfc2328.txt

[2] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an
intellectual history of programmable networks,” ACM Computer Com-
munication Review, vol. 44, no. 2, pp. 87–98, 2014.

[3] S. Giacalone, D. Ward, J. Drake, A. Atlas, and S. Previdi,
“OSPF Traffic Engineering (TE) Metric Extensions,” RFC 7471
(Standards Track), IETF, Mar 2015. [Online]. Available: http:
//www.ietf.org/rfc/rfc7471.txt

[4] K. Greene, “TR10: Software-Defined Networking,” "http:
//www2.technologyreview.com/news/412194/tr10-software-defined-
networking/", Feb 2009.

[5] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“Fresco: Modular composable security services for software defined
networks,” in NDSS, Feb 2013.

[6] Broadcom, “OpenFlow-Data Plane Abstraction Networking Software,”
http://www.broadcom.com/products/ethernet-communication-and-
switching/switching/of-dpa-software, 2015.

[7] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a model-driven SDN controller architecture,” in IEEE “A World of
Wireless, Mobile and Multimedia Networks", 2014, pp. 1–6.

[8] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: towards an open, distributed SDN OS,” in ACM HotSDN,
2014, pp. 1–6.

[9] R. Enns, M. Bjorklund, and J. Schoenwaelder, “Network Configuration
Protocol (NETCONF),” RFC 6241 (Standards Track), IETF, Jun 2011.
[Online]. Available: http://www.ietf.org/rfc/rfc6241.txt

[10] P. C. van Oorschot, T. Wan, and E. Kranakis, “On interdomain routing
security and pretty secure BGP (psBGP),” ACM Transactions on
Information and System Security (TISSEC), vol. 10, no. 3, 2007.

[11] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility
in software defined networks: New attacks and countermeasures,” in
NDSS, Feb. 2015.

[12] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran,
“Securing the software defined network control layer,” in NDSS, Feb
2015.

[13] M. Dhawan, R. Poddar, K. Mahaf, and V. Mann, “Sphinx: Detecting
security attacks in software defined networks,” in NDSS, Feb 2015.

[14] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and
W. Kellerer, “Software defined optical networks (SDONs): A compre-
hensive survey,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 4, pp. 2738–2786, 2016.

[15] T. Xing, Z. Xiong, D. Huang, and D. Medhi, “SDNIPS: Enabling
software-defined networking based intrusion prevention system in
clouds,” in IEEE CNSM, 2014, pp. 308–311.

[16] ITUTX Recommendation, “200 (1994) | ISO/IEC 7498-1: 1994,”
Information technology–Open systems interconnection–Basic reference
model: The basic model, 1994.

http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc7471.txt
http://www.ietf.org/rfc/rfc7471.txt
"http://www2.technologyreview.com/news/412194/tr10-software-defined-networking/"
"http://www2.technologyreview.com/news/412194/tr10-software-defined-networking/"
"http://www2.technologyreview.com/news/412194/tr10-software-defined-networking/"
http://www.broadcom.com/products/ethernet-communication-and-switching/switching/of-dpa-software
http://www.broadcom.com/products/ethernet-communication-and-switching/switching/of-dpa-software
http://www.ietf.org/rfc/rfc6241.txt


IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 17

[17] A. R. Sharafat, S. Das, G. Parulkar, and N. McKeown, “MPLS-
TE and MPLS VPNs with OpenFlow,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, pp. 452–453, 2011.

[18] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“OpenFlow: Meeting Carrier-grade Recovery Requirements,” Com-
puter Communications, vol. 36, no. 6, pp. 656–665, 2013.

[19] B. C. ord Neuman, “Scale in distributed systems,” ISI/USC, 1994.
[20] The International Telegraph and Telephone Consultative Committee

(CCIT), “ITU-T X.800: Security architecture for Open Systems Inter-
connection for CCITT applications,” Data Communication Networks:
OSI; Security, Structure and Applications, 1991.

[21] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on
network virtualization hypervisors for software defined networking,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 655–
685, 2016.

[22] S. Convery, “Hacking Layer 2: Fun with Ethernet Switches,”
ftp://n.manet.nu/pub/doc/Hacking_Layer_2_Fun_with_Ethernet_
Switches.pdf, 2002.

[23] T. Kiravuo, M. Sarela, and J. Manner, “A Survey of Ethernet LAN
Security,” IEEE Communications Surveys & Tutorials, vol. 15, no. 3,
pp. 1477–1491, 2013.

[24] K. R. Fall and W. R. Stevens, TCP/IP Illustrated, volume 1: The
protocols. Addison-Wesley, 2011.

[25] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole attacks in wireless
networks,” IEEE journal on selected areas in communications, vol. 24,
no. 2, pp. 370–380, 2006.

[26] N. Tsitsiroudi, P. Sarigiannidis, E. Karapistoli, and A. A. Economides,
“Eyesim: A mobile application for visual-assisted wormhole attack
detection in iot-enabled wsns,” in IFIP Wireless and Mobile Networking
Conference (WMNC), 2016, pp. 103–109.

[27] S. Wilkins, “Switchport Security Concepts and Configuration,” Cisco
Press, Jul. 2011.

[28] R. Perlman, “An Algorithm for Distributed Computation of a Spanning
Tree in an Extended LAN,” in ACM SIGCOMM, 1985, pp. 44–53.

[29] E. Vyncke and C. Paggen, “Attacking the spanning tree protocol,” http:
//www.ciscopress.com/articles/article.asp?p=1016582&seqNum=2.

[30] Cisco, “Safe layer 2 security in-depth version 2,” http://www.cisco.
com/warp/public/cc/so/cuso/epso/sqfr/sfblu_wp.htm#wp998892.

[31] IEEE, “Standard for Local and Metropolitan Area Networks–Link
Aggregation,” IEEE Std 802.1AXTM-2014 (Revision of Std 802.1AX-
2008), pp. 1–320, Dec. 2014.

[32] Cisco, “Catalyst 3750-X and 3560-X Switch Software Configuration
Guide - Managing Switch Stacks,” "http://www.cisco.com/c/en/
us/td/docs/switches/lan/catalyst3750x_3560x/software/release/12-
2_55_se/configuration/guide/3750xscg/swstack.pdf", Nov. 2014.

[33] T. Li and R. Atkinson, “IS-IS Cryptographic Authentication,” RFC
5304 (Proposed Standard), IETF, Oct. 2008, updated by RFCs 6233,
6232. [Online]. Available: http://www.ietf.org/rfc/rfc5304.txt

[34] R. Perlman, D. Eastlake, D. Dutt, S. Gai, and A. Ghanwani,
“Routing Bridges (RBridges): Base Protocol Specification,” RFC 6325
(Proposed Standard), IETF, Jul. 2011, updated by RFCs 6327, 6439.
[Online]. Available: http://www.ietf.org/rfc/rfc6325.txt

[35] D. Fedyk and M. Seaman, “802.1aq - Shortest Path Bridging,”
Mar. 2012. [Online]. Available: http://www.ieee802.org/1/pages/802.
1aq.html

[36] Cisco Networking Academy, “Routing and Switching Essentials Com-
panion Guide,” Cisco Press, Feb. 2014.

[37] D. Eastlake, T. Senevirathne, A. Ghanwani, D. Dutt, and A. Banerjee,
“Transparent Interconnection of Lots of Links (TRILL) Use of IS-IS,”
RFC 7176 (Standards Track), IETF, May 2014. [Online]. Available:
http://www.ietf.org/rfc/rfc7176.txt

[38] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach, 6th ed. Pearson Higher Ed, 2013, vol. 1.

[39] Y. Volobuev, “Playing redir games with ARP and ICMP,” BUGTRAQ
mailing list, http://www. goth.net/iceburg/tcp/arp.games.html, 1997.

[40] C. Systems, “Understanding and Configuring Dynamic ARP Inspec-
tion,” http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/
12-2/25ew/configuration/guide/conf/dynarp.html#wp1039231, 2004.

[41] W. Lootah, W. Enck, and P. McDaniel, “TARP: Ticket-based address
resolution protocol,” Computer Networks, vol. 51, no. 15, pp. 4322–
4337, 2007.

[42] S. Y. Nam, D. Kim, J. Kim et al., “Enhanced ARP: preventing ARP
poisoning-based man-in-the-middle attacks,” IEEE Commun. Lett.,
vol. 14, no. 2, pp. 187–189, 2010.

[43] C. Hedrick, “Routing Information Protocol,” RFC 1058 (Historic),
IETF, Jun 1988, updated by RFCs 1388, 1723. [Online]. Available:
http://www.ietf.org/rfc/rfc1058.txt

[44] G. Nakibly, E. Menahem, Y. Elovici, and A. Waizel, “Owning the
Routing Table - Part II,” in BlackHat, 2013.

[45] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast
Next-Hop Selection,” RFC 2991 (Informational), IETF, Nov 2000.
[Online]. Available: http://www.ietf.org/rfc/rfc2991.txt

[46] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,”
RFC 2992 (Informational), IETF, Nov 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2992.txt

[47] S. Nadas, “Virtual Router Redundancy Protocol (VRRP) Version 3
for IPv4 and IPv6,” RFC 5798 (Standards Track), IETF, Mar. 2010.
[Online]. Available: http://www.ietf.org/rfc/rfc5798.txt

[48] S. Knight, D. Weaver, D. Whipple, R. Hinden, D. Mitzel, P. Hunt,
P. Higginson, M. Shand, and A. Lindem, “Virtual Router Redundancy
Protocol,” RFC 23388 (Standards Track), IETF, Apr 1998. [Online].
Available: http://www.ietf.org/rfc/rfc2338.txt

[49] R. Hinden, “Virtual Router Redundancy Protocol (VRRP),” RFC
3768 (Standards Track), IETF, Apr 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3768.txt

[50] Open Networking Foundation, “OpenFlow Switch Specification
Version 1.5.0,” "https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/openflow-
switch-v1.5.0.noipr.pdf", Dec 2014.

[51] M. Casado, T. Garnkel, M. Freedman, A. Akella, D. Boneh, N. McKe-
owon, and S. Shenker, “SANE: A Protection Architecture for Enterprise
Networks,” in USENIX Security Symposium, 2006.

[52] IEEE, “Standard for Local and Metropolitan Area Networks–Station
and Media Access Control Connectivity Discovery,” IEEE Std
802.1AB-2009 (Revision of Std 802.1AB-2005), pp. 1–204, Sep. 2009.

[53] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
Coordination for Internet-scale Systems,” in USENIX ATC, 2010.

[54] D. Ongaro and J. Ousterhout, “In Search of an Understandable Con-
sensus Algorithm,” in USENIX ATC, 2014, pp. 305–319.

[55] W. Vogels, “Eventually consistent,” Communications of the ACM,
vol. 52, no. 1, pp. 40–44, 2009.

[56] Akka Docs, “Network Security,” http://getakka.net/docs/remoting/
security, Akka, 2015.

[57] H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi,
“SDNi: A Message Exchange Protocol for Software Defined Networks
(SDNs) across Multiple Domains,” Internet Draft, Jun 2012. [Online].
Available: http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt

[58] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[59] A. Ron, A. Shulman-Peleg, and E. Bronshtein, “No SQL, no Injection?”
in IEEE S&P workshop on Web 2.0 Security & Privacy, 2015.

[60] S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in ACM HotSDN (ext. abstract), 2013, pp. 165–166.

[61] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices: yesterday,
today, and tomorrow,” CoRR, vol. abs/1606.04036, 2016. [Online].
Available: http://arxiv.org/abs/1606.04036

[62] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 467–472, 2012.

[63] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an Operating System for Networks,”
ACM Computer Communication Review, Jul 2008.

[64] “Floodlight OpenFlow Controller,” http://www.projectfloodlight.org/
floodlight/, 2015.

[65] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
“A Security Enforcement Kernel for OpenFlow Networks,” in ACM
HotSDN, 2012, pp. 121–126.

[66] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a secure
controller platform for OpenFlow applications,” in ACM HotSDN (ext.
abstract), 2013, pp. 171–172.

[67] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A robust, secure, and high
performance network operating system,” in ACM CCS, 2014.

[68] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McK-eown, and G. Parulkar, “Can the production network be the
testbed?” in USENIX OSDI, 2010, pp. 1–14.

[69] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
A slice abstraction for software-defined networks,” in ACM HotSDN,
2012, pp. 79–84.

[70] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration Analysis
and Verification of Federated OpenFlow Infrastructures,” in ACM
SafeConfig Workshop, 2010, pp. 37–44.

ftp://n.manet.nu/pub/doc/Hacking_Layer_2_Fun_with_Ethernet_Switches.pdf
ftp://n.manet.nu/pub/doc/Hacking_Layer_2_Fun_with_Ethernet_Switches.pdf
http://www.ciscopress.com/articles/article.asp?p=1016582&seqNum=2
http://www.ciscopress.com/articles/article.asp?p=1016582&seqNum=2
http://www.cisco.com/warp/public/cc/so/cuso/epso/sqfr/sfblu_wp.htm#wp998892
http://www.cisco.com/warp/public/cc/so/cuso/epso/sqfr/sfblu_wp.htm#wp998892
"http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3750x_3560x/software/release/12-2_55_se/configuration/guide/3750xscg/swstack.pdf"
"http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3750x_3560x/software/release/12-2_55_se/configuration/guide/3750xscg/swstack.pdf"
"http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3750x_3560x/software/release/12-2_55_se/configuration/guide/3750xscg/swstack.pdf"
http://www.ietf.org/rfc/rfc5304.txt
http://www.ietf.org/rfc/rfc6325.txt
http://www.ieee802.org/1/pages/802.1aq.html
http://www.ieee802.org/1/pages/802.1aq.html
http://www.ietf.org/rfc/rfc7176.txt
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/dynarp.html#wp1039231
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/dynarp.html#wp1039231
http://www.ietf.org/rfc/rfc1058.txt
http://www.ietf.org/rfc/rfc2991.txt
http://www.ietf.org/rfc/rfc2992.txt
http://www.ietf.org/rfc/rfc5798.txt
http://www.ietf.org/rfc/rfc2338.txt
http://www.ietf.org/rfc/rfc3768.txt
"https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf"
"https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf"
"https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf"
http://getakka.net/docs/remoting/security
http://getakka.net/docs/remoting/security
http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
http://arxiv.org/abs/1606.04036
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/


IEEE COMST (TO APPEAR; ACCEPTED MAY 17, 2018) 18

[71] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FlowGuard: Building robust
firewalls for software defined networks,” in ACM HotSDN, 2014, pp.
97–102.

[72] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “En-
forcing network-wide policies in the presence of dynamic middlebox
actions using FlowTags,” in USENIX NSDI, 2014.

[73] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable dynamic network control,” in USENIX NSDI, 2015.

[74] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model
checking invariant security properties in OpenFlow,” in IEEE ICC,
2013, pp. 1974–1979.

[75] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in USENIX NSDI, 2013, pp. 99–111.

[76] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from
Malicious Administrators,” in ACM HotSDN, Aug. 2014.

[77] S. Scott-Hayward, C. Kane, and S. Sezer, “OperationCheckpoint: SDN
Application Control,” in IEEE ICNP, 2014, pp. 618–623.

[78] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability
assessment,” in ACM HotSDN (ext. abstract), 2013, pp. 151–152.

[79] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in IEEE LCN, 2010, pp. 408–415.

[80] J. Kwon, D. Seo, M. Kwon, H. Lee, A. Perrig, and H. Kim, “An in-
crementally deployable anti-spoofing mechanism for software-defined
networks,” Computer Communications, 2015.

[81] Y. Cui, L. Yan, S. Li, H. Xing, W. Pan, J. Zhu, and X. Zheng, “SD-Anti-
DDoS: Fast and efficient DDoS defense in software-defined networks,”
Network and Computer Applications, vol. 68, pp. 65–79, 2016.

[82] F. Botelho, A. Bessani, F. Ramos, and P. Ferreira, “On the design of
practical fault-tolerant SDN controllers,” in IEEE European Workshop
on SDN (EWSDN), 2014, pp. 73–78.

[83] S. Betge-Brezetz, G.-B. Kamga, and M. Tazi, “Trust support for SDN
controllers and virtualized network applications,” in IEEE NetSoft,
2015.

[84] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in ACM HotSDN, 2012, pp. 7–12.

[85] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
USENIX OSDI, vol. 10, 2010, pp. 351–364.

[86] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in USENIX INM/WREN, 2010.

[87] J. Sonchack, J. M. Smith, A. J. Aviv, and E. Keller, “Enabling Practical
Software-defined Networking Security Applications with OFX,” in
NDSS, 2016.

[88] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Recent Advances in
Intrusion Detection. Springer, 2011, pp. 161–180.

[89] S. Shirali-Shahreza and Y. Ganjali, “Efficient implementation of secu-
rity applications in OpenFlow controller with FleXam,” in IEEE High-
Performance Interconnects (HOTI), 2013, pp. 49–54.

[90] M. Antikainen, T. Aura, and M. Särelä, “Spook in Your Network:
Attacking an SDN with a Compromised OpenFlow Switch,” in Secure
IT Systems. Springer LNCS, 2014, vol. 8788, pp. 229–244.

[91] P.-W. Chi, C.-T. Kuo, J.-W. Guo, and C.-L. Lei, “How to detect a
compromised SDN switch,” in IEEE NetSoft, 2015.

[92] H. Wang, L. Xu, and G. Gu, “Floodguard: A DoS Attack Prevention
Extension in Software-Defined Networks,” in IEEE/IFIP Dependable
Systems and Networks (DSN), 2015, pp. 239–250.

[93] T. Sasaki, C. Pappas, T. Lee, T. Hoefler, and A. Perrig, “SDNsec:
Forwarding Accountability for the SDN Data Plane,” in IEEE ICCCN,
2016, pp. 1–10.

[94] R. Kloti, V. Kotronis, and P. Smith, “OpenFlow: A security analysis,”
in IEEE ICNP, 2013, pp. 1–6.

[95] R. Kandoi and M. Antikainen, “Denial-of-service attacks in OpenFlow
SDN networks,” in IFIP/IEEE Integrated Network Management (IM),
2015, pp. 1322–1326.

[96] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-
level state transition as a new switch primitive for SDN,” in ACM
HotSDN, 2014, pp. 61–66.

[97] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate:
programming platform-independent stateful openflow applications in-
side the switch,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 44–51, 2014.

[98] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti,
“A Survey on the Security of Stateful SDN Data Planes,” IEEE
Communications Surveys & Tutorials, 2017.

[99] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and
dependable software defined networks,” in ACM HotSDN, 2013, pp.
55–60.

[100] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A Survey of Security
in Software Defined Networks,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 623–654, 2016.

[101] I. Alsmadi and D. Xu, “Security of software defined networks: A
survey,” Computers & Security, vol. 53, pp. 79–108, 2015.

[102] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in
software defined networks: A survey,” IEEE Communications Surveys
& Tutorials, vol. 17, no. 4, pp. 2317–2346, 2015.

[103] S. Ali, V. Sivaraman, A. Radford, and S. Jha, “A Survey of Securing
Networks Using Software Defined Networking,” IEEE Transactions on
Reliability, vol. 64, no. 3, pp. 1086–1097, 2015.

[104] L. Schehlmann, S. Abt, and H. Baier, “Blessing or curse? revisiting
security aspects of software-defined networking,” in Workshop on
Management of SDN and NFV Systems (ManSDN/NFV), 2014.

[105] D. B. Rawat and S. R. Reddy, “Software defined networking architec-
ture, security and energy efficiency: A survey,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 1, pp. 325–346, 2017.

[106] R. Sahay, G. Blanc, Z. Zhang, and H. Debar, “Towards Autonomic
DDoS Mitigation using Software Defined Networking,” in NDSS
Workshop on Security of Emerging Networking Technologies, 2015.

[107] M. Yan, J. Casey, P. Shome, A. Sprintson, and A. Sutton, “Aetherflow:
principled wireless support in SDN,” in IEEE ICNP, 2015.

[108] I. F. Akyildiz, P. Wang, and S.-C. Lin, “SoftAir: A Software Defined
Networking Architecture for 5G Wireless Systems,” Computer Net-
works, vol. 85, pp. 1–18, 2015.

AbdelRahman Abdou is a Post-Doctoral researcher
at the Institute of Information Security, ETH Zürich,
Switzerland. Before that he was a Post-Doctoral Fel-
low in the School of Computer Science at Carleton
University, Canada. He received his PhD (2015) in
Systems and Computer Engineering from Carleton
University. His research interests include location-
aware security, SDN security, system security, au-
thentication, and using Internet measurements to
solve problems related to Internet security.

Paul C. van Oorschot is a Professor of Computer
Science at Carleton University, and the Canada Re-
search Chair in Authentication and Computer Secu-
rity. He was the program chair of USENIX Security
2008, NDSS 2001-2002, NSPW 2014-2015, a co-
author of the Handbook of Applied Cryptography
and a past associate editor of IEEE TDSC, IEEE
TIFS, and ACM TISSEC. He is an ACM Fellow, and
Fellow of the Royal Society of Canada. His research
interests include authentication and Internet security.

Tao Wan is a security researcher with Huawei
Canada (Ottawa). He has published in top security
conferences including IEEE Security and Privacy,
ACM CCS, USENIX Security and NDSS. His re-
search interests include security of SDN, cloud com-
puting, 5G, and Internet infrastructure. He received
his PhD (2006) in Computer Science from Carleton
University.


	Introduction
	Background
	Conventional Networks
	Software Defined Networking

	A Framework for Comparative Analysis
	Network Properties
	Threat Models

	L2 Networks
	Basic Forwarding
	Attacks
	Defenses

	Loop Free Forwarding
	Attacks
	Defenses

	Link Redundancy
	Attacks
	Defenses

	Device Redundancy
	Attacks
	Defenses

	Scalability
	Attacks
	Defenses


	L3 Networks
	Basic Forwarding
	Attacks
	Defenses

	Loop Free Forwarding
	Attacks
	Defenses

	Link Redundancy
	Attacks

	Device Redundancy
	Attacks
	Defenses

	Scalability

	Software Defined Networks
	Basic Forwarding
	Attacks
	Defenses

	Loop Free Forwarding
	Attacks
	Defenses

	Link Redundancy
	Attacks
	Defenses

	Device Redundancy
	Attacks
	Defense

	Scalability
	Attacks
	Defense


	SDN versus Conventional Networks: Lessons Learned
	Basic Forwarding
	Loop Free Forwarding
	Link Redundancy
	Device Redundancy
	Scalability

	Discussions and Further Insights
	Related Work
	Control Plane
	Security-oriented controllers
	Control plane security extensions and APIs
	Attack Mitigation
	Proposals for control plane scalability

	Data Plane
	Security services
	Handling compromised switches
	DoS attacks
	MitM attacks
	Stateful SDN

	Security Surveys

	Future Challenges and Research Directions
	Other Threat Models
	Expanding Network Properties
	Analyzing the Effect of Network Technologies
	Distributed Robust Controllers
	Evaluating SDN Controllers in the Wild

	Concluding Remarks
	References
	Biographies
	AbdelRahman Abdou
	Paul C. van Oorschot
	Tao Wan


